Последние новости
22 ноября 2024
21 ноября 2024

Бесформенный металл, строительный микроб и другие уникальные материалы

25 июня 2013, 19:51
no image

Разнообразие природы безгранично, но есть материалы, которые не появились бы на свет без человеческого участия.

Безымянный

Предлагаем вашему вниманию 10 веществ, созданных руками человека и проявляющих фантастические свойства.

1. Одностороннее пуленепробиваемое стекло

У самых богатых людей есть проблемы: судя по растущим продажам этого материала, им необходимо пуленепробиваемое стекло, которое спасло бы жизнь, но не мешало им отстреливаться.

Это стекло останавливает пули с одной стороны, но в то же время пропускает с другой – этот необычный эффект заключается в «сэндвиче» из хрупкого акрилового слоя и более мягкого эластичного поликарбоната: под давлением акрил проявляет себя как очень твердое вещество, и при попадании пули он гасит ее энергию, трескаясь при этом. Это дает возможность амортизирующему слою выдержать удар пули и осколков акрила, не разрушаясь при этом.

При выстреле с другой стороны упругий поликарбонат пропускает через себя пулю растягиваясь и разрушая ломкий акриловый слой, что не оставляет никакого дальнейшего барьера для пули, но не стоит отстреливаться слишком часто, поскольку из-за этого в защите образуются дыры.

2. Жидкое стекло

Было время, когда средства для мытья посуды не существовало – люди обходились содой, уксусом, серебряным песком, трением или проволочной щеткой, но новое средство поможет сэкономить немало времени и сил и вообще оставить мытье посуды в прошлом. «Жидкое стекло» содержит диоксид кремния, образующий при взаимодействии с водой или этанолом материал, который затем высыхает, превращаясь в тонкий (более чем в 500 раз тоньше человеческого волоса) слой эластичного, сверхстойкого, не токсичного и влагоотталкивающего стекла.

С таким материалом отпадает необходимость в чистящих и дезинфицирующих средствах, так как он способен отлично предохранять поверхность от микробов: бактерии на поверхности посуды или раковины просто изолируются. Также изобретение найдет применение в медицине, ведь стерилизовать инструменты теперь можно с помощью лишь горячей воды, без использования химических дезинфицирующих средств.

Это покрытие может использоваться для борьбы с грибковыми инфекциями на растениях и герметизации бутылок, его свойства действительно уникальны – оно отталкивает влагу, дезинфицирует, при этом оставаясь эластичным, прочным, пропускающим воздух, и совершенно незаметным, а также дешевым.

3. Бесформенный металл

Это вещество позволяет игрокам в гольф сильнее бить по мячу, увеличивает поражающую способность пули и продлевает срок службы скальпелей и деталей двигателя.

Вопреки своему названию, материал сочетает прочность металла и твердость поверхности стекла: на видео видно, как отличается деформация стали и бесформенного металла при падении металлического шарика. Шарик оставляет на поверхности стали множество маленьких «ям» – это означает, что металл поглощает и рассеивает энергию удара. Бесформенный металл остался гладок, значит, он лучше возвращает энергию удара, о чем также говорит более продолжительный отскок.

Большинство металлов имеет упорядоченное кристаллическое молекулярное строение, и от удара или другого воздействия, кристаллическая решетка искажается, из-за чего на металле и остаются вмятины. В бесформенном металле атомы расположены хаотично, поэтому после воздействия атомы возвращаются на первоначальную позицию.

4. Старлит

Это пластик, выдерживающий невероятно высокую температуру: его тепловой порог настолько высок, что сначала изобретателю просто не поверили. Лишь после демонстрации возможностей материала в прямом эфире на телевидении, с создателем старлита связались сотрудники Британского Центра Атомного Вооружения.

Ученые облучили пластик вспышками высокой температуры, эквивалентными мощности 75-ти бомб, сброшенных на Хиросиму – образец лишь немного обуглился. Один из испытателей заметил: «Обычно между вспышками приходится ждать несколько часов, чтобы материал остыл. Сейчас мы облучали его каждые 10 минут, а он остался невредим, будто в насмешку».

В отличие от других термостойких материалов, старлит не становится токсичным при высокой температуре, также он невероятно легок. Его можно применять при строительстве космических аппаратов, самолетов, огнезащитных костюмов или в военной промышленности, но, к сожалению, старлит так и не покинул пределы лаборатории: его создатель Моррис Уард умер в 2011-м году, не запатентовав свое изобретение и не оставив никаких описаний. Все, что известно о строении старлита – что в его состав входит 21 органический полимер, несколько сополимеров и небольшое количество керамики.

5. Аэрогель

Представьте себе пористое вещество такой низкой плотности, что 2,5 см? его заключает в себе поверхности, сравнимые с размером футбольного поля. Но это не определенный материал, а, скорее, класс веществ: аэрогель – это форма, которую могут принимать некоторые материалы, а сверхмалая плотность делает его отличным теплоизолятором. Если сделать из него окно толщиной 2,5 см, оно будет иметь те же теплоизоляционные свойства, что и стеклянное окно толщиной 25 см.

Все самые легкие в мире материалы – аэрогели: например, кварцевый аэрогель (по сути, высушенный силикон) всего в три раза тяжелее воздуха и достаточно хрупок, зато может выдержать вес, в 1000 раз превышающий его собственный. Графеновый аэрогель (на иллюстрации выше) состоит из углерода, а его твердый компонент в семь раз легче воздуха: имея пористую структуру, это вещество отталкивает воду, но поглощает нефть – его предполагается использовать для борьбы с нефтяными пятнами на поверхности воды.

6. Диметилсульфоксид (DMSO)

Этот химический растворитель сначала появился, как побочный продукт выработки целлюлозы и никак не применялся до 60-х годов прошлого века, когда раскрыли его медицинский потенциал: доктор Джейкобс обнаружил, что DMSO может легко и безболезненно проникать в ткани тела – это позволяет быстро и без повреждения кожи вводить различные препараты.

Его собственные лечебные свойства снимают боль при растяжении связок или, например, воспалении суставов при артрите, также DMSO может использоваться для борьбы с грибковыми инфекциями.

К сожалению, когда его медицинские свойства были открыты, производство в промышленных масштабах уже давно было налажено, и его широкая доступность не позволяла фармацевтическим компаниям получать прибыль. Кроме того у DMSO есть неожиданный побочный эффект – запах изо рта использовавшего его человека, напоминающий чеснок, поэтому он используется в основном в ветеринарии.

7. Углеродные нано-трубки

Фактически это листы углерода толщиной в один атом, свернутые в цилиндры – их молекулярная структура напоминает рулон проволочной сетки, и это самый прочный материал, известный науке. В шесть раз легче, но в сотни раз крепче стали, нано-трубки обладают лучшей теплопроводностью, чем алмаз, и проводят электричество эффективнее меди.

Сами трубки не видны невооруженным взглядом, а в необработанном виде вещество напоминает сажу: чтобы проявились его необыкновенные свойства, надо заставить вращаться триллионы этих невидимых нитей, что стало возможным относительно недавно.

Материал может применяться в производстве кабеля для проекта «лифта в космос», достаточно давно разработанного, но до недавнего времени совершенно фантастичного из-за невозможности создать кабель длиной 100 тыс км, не согнувшийся бы под собственным весом.

Углеродные нано-трубки помогают и при лечении рака груди – их можно помещать в каждую клетку тысячами, а наличие фолиевой кислоты позволяет выявлять и «захватывать» раковые образования, затем нано-трубки облучают инфракрасным лазером, и клетки опухоли при этом погибают. Также материал может применяться в производстве легких и прочных бронежилетов…

8. Пайкерит

В 1942-м году перед англичанами стояла проблема недостатка стали для строительства авианосцев, необходимых для борьбы с немецкими подводными лодками. Джеффри Пайк предложил соорудить огромные плавучие аэродромы изо льда, однако она себя не оправдала: лед хоть и недорог, но недолговечен. Все изменилось с открытием нью-йоркскими учеными необыкновенных свойств смеси льда и древесных опилок, которая по прочности была подобна кирпичу, а также не трескается и не плавится. Зато материал можно было обрабатывать, как дерево или плавить, подобно металлу, в воде опилки разбухали, образуя оболочку и предотвращая таяние льда, за счет чего любое судно можно было ремонтировать прямо во время плавания.

Но при всех положительных качествах, пайкерит был малопригоден для эффективного использования: для постройки и создания ледяного покрова судна весом до 1000 т достаточно было двигателя мощностью в одну лошадиную силу, но при температуре выше -26 °С (а для ее поддержания необходима сложная система охлаждения) лед имеет свойство проседать. Кроме того, целлюлоза, используемая также в производстве бумаги, была в дефиците, поэтому пайкерит так и остался неосуществимым проектом.

9. BacillaFilla – строительный микроб

У бетона есть свойство «уставать» со временем – он становится грязно-серым, и в нем образуются трещины. Если речь идет о фундаменте здания, ремонт может быть достаточно трудоемким и дорогим, при этом не факт, что он устранит «усталость»: многие здания сносят именно по причине невозможности восстановления фундамента.

Группа студентов Университета Ньюкасла разработала генно-модифицированные бактерии, способные проникать в глубокие трещины и вырабатывать смесь карбоната кальция и клея, укрепляя здание. Бактерии запрограммированы так, что они распространяются по поверхности бетона, пока не достигнут края очередной трещины, и тогда начинается производство цементирующего вещества, имеется даже механизм самоуничтожения бактерий, предотвращающий образование бесполезных «наростов».

Эта технология позволит уменьшить антропогенный выброс двуокиси углерода в атмосферу, ведь 5% его дает именно производство бетона, а также с ее помощью будет продлен срок службы зданий, восстановление которых традиционным способом обошлось бы в большую сумму.

10. Материал D3o

Устойчивость к механическому воздействию во все времена была одной из основных проблем материаловедения, пока не изобрели D3o – вещество, молекулы которого находятся в свободном движении при нормальных условиях и фиксируются при ударе. Строение D3o напоминает смесь кукурузного крахмала и воды, которой иногда наполняют бассейны. Специальные куртки из этого материала, удобные и обеспечивающие защиту при падении, ударе битой или кулаками, которые могут вам достаться, уже находятся в свободной продаже. Защитные элементы не заметны снаружи, что подходит для каскадеров и даже полиции.

По материалам  allday.in.ua

Все статьи